Continuous fields of C*-algebras and their invariants

Marius Dadarlat

Purdue University

Shanghai, June 2010

${\cal C}(X)$ -algebras and Continuous fields

X metrizable compact space

Definition. A structure of C(X)-algebra on a separable C*-algebra A consists of a unital *-homomorphism

$$\theta:C(X)\to Z(\mathbb{M}(A))$$

 θ is called the structure morphism. If A is unital $\theta:C(X)\to Z(A)$, Z(A)=the center of A. Usually we drop θ from notation and write

$$\theta(f)a = fa$$

Putting a C(X)-algebra structure on A is equivalent to giving a continuous map $\Theta: \operatorname{Prim}(A) \to X.$

Due to the C(X)-module structure we can localize at the points of X:

fibers:
$$A(x) = A/C(X, x)A$$
 restrictions $A(Y) = A/C(X, Y)A$

evaluation maps:
$$\pi_x: A \to A(x)$$
, $a(x) := \pi_x(a)$.

 $A\ C(X)$ -algebra becomes a continuous field **if**

$$x \mapsto ||a(x)||$$
 is continuous $\forall a \in A$.

Putting a continuous field structure on A is equivalent to giving a continuous and open map $\Theta: \operatorname{Prim}(A) \to X$.

If a C(X)-algebra A is unital and all fibers are $\underline{\text{simple}}$ then A is automatically a continuous field.

Morphisms of continuous fields

A morphism of continuous fields is a C(X)-linear *-homomorphism $\varphi:A\to B,\ \varphi(fa)=f\varphi(a).$

It induces maps $\varphi_x:A(x)\to B(x)$ on each fiber

 $\varphi_V:A(V)\to A(V)$ where $V\subset X$ is either open or closed.

 $V ext{ open } \Rightarrow A(V) := C_0(V)A ext{ ideal of } A$

 $V \text{ closed} \Rightarrow A(V) := C(X, V)A \text{ quotient of } A$

Examples of continuous fields

If A is any separable C*-algebra with center Z(A)=C(X) and each A(x) fiber is simple then A is always a continuous field over X for the structure map $Z(A)\subset A$.

- (0) If the primitive spectrum Prim(A) = X of A is Hausdorff, then A is a continuous field with simple fibers over X.
 - (1) Trivial field with fiber D: $A = C(X) \otimes D$.
- (2) Locally trivial fields: $\forall x \in X$ has closed neighborhood V with $A(V) \cong C(V) \otimes D$.
- (3) next slide will show fields with fixed fiber but which are not locally trivial

How complicated can a continuous field be?

If $\gamma: D \to D$ injective *-hom and $0 \le r \le 1$, then

$$B_r = \{ f \in C[0,1] \otimes D : f(r) \in \gamma(D) \}$$

has all its fibers are $\cong D$. The fiber at r is $\gamma(D) \cong D$.

<u>Fact</u>: $B_r \cong C[0,1] \otimes D$ if and only if there is a continuous path $\alpha: [0,1] \to \operatorname{End}(D)$ such that $\alpha[0,1) \subset \operatorname{Aut}(D)$ and $\alpha(1) = \gamma$.

A field nowhere locally trivial

$$B_{r_i} = \{ f \in C[0,1] \otimes D : f(r_i) \in \gamma(D) \}$$

If (r_n) dense in [0,1], then the infinite tensor product

$$B_{r_1} \otimes_{C[0,1]} B_{r_2} \otimes_{C[0,1]} \cdots B_{r_3} \otimes_{C[0,1]} \cdots$$

is field over [0,1] which does not need to be locally trivial at any point, even though all fibers are mutually isomorphic to $D\otimes D\otimes D\otimes \cdots$.

being a continuous field \Rightarrow any kind of local triviality

even if the fibers are mutually isomorphic.

Thm. (Fell, Tomiyama-Takesaki) a unital C*-algebra all of whose irreducible representations are of the same finite dimension n is given by the continuous sections of a <u>locally trivial</u> bundle over a compact Hausdorff space with fiber $M_n(\mathbb{C})$.

Thm. (Fell, Tomiyama-Takesaki) a unital C*-algebra all of whose irreducible representations are of the same finite dimension n is given by the continuous sections of a <u>locally trivial</u> bundle over a compact Hausdorff space with fiber $M_n(\mathbb{C})$.

What is special about $M_n(\mathbb{C})$?

Thm. (Fell, Tomiyama-Takesaki) a unital C*-algebra all of whose irreducible representations are of the same finite dimension n is given by the continuous sections of a <u>locally trivial</u> bundle over a compact Hausdorff space with fiber $M_n(\mathbb{C})$.

What is special about $M_n(\mathbb{C})$?

All unital endomorphisms of $M_n(\mathbb{C})$ are automorphisms!

Thm. (Fell, Tomiyama-Takesaki) a unital C*-algebra all of whose irreducible representations are of the same finite dimension n is given by the continuous sections of a <u>locally trivial</u> bundle over a compact Hausdorff space with fiber $M_n(\mathbb{C})$.

What is special about $M_n(\mathbb{C})$?

All unital endomorphisms of $M_n(\mathbb{C})$ are automorphisms!

What if all primitive quotients of A are isomorphic to \mathcal{K} the compact operators on a separable Hilbert space and $\operatorname{Prim}(A) = X$ is Hausdorff? A is certainly a continuous field over X with fiber \mathcal{K} . But is it locally trivial?

What if for all irred reps π of A, $\pi(A) \cong D$, same D.

A=separable continuous field with fibers the compact operators $\mathcal K$ over a compact space X.

Def A satisfies Fell's condition if $\forall x \in X \exists p \in A$ and a neighborhood V of x such that p(v) is a projection of rank one for each point $\forall v \in V$.

A=separable continuous field with fibers the compact operators $\mathcal K$ over a compact space X.

Def A satisfies Fell's condition if $\forall x \in X \exists p \in A$ and a neighborhood V of x such that p(v) is a projection of rank one for each point $\forall v \in V$.

Thm. 1 (Dixmier-Douady) If X is finite dimensional then A is locally trivial \Leftrightarrow it satisfies Fell's condition.

A=separable continuous field with fibers the compact operators $\mathcal K$ over a compact space X.

Def A satisfies Fell's condition if $\forall x \in X \exists p \in A$ and a neighborhood V of x such that p(v) is a projection of rank one for each point $\forall v \in V$.

Thm. 1 (Dixmier-Douady) If X is finite dimensional then A is locally trivial \Leftrightarrow it satisfies Fell's condition.

Thm. 2 (Dixmier-Douady) Locally trivial continuous fields with fiber \mathcal{K} are classified by $H^3(X;\mathbb{Z})$.

A=separable continuous field with fibers the compact operators $\mathcal K$ over a compact space X.

Def A satisfies Fell's condition if $\forall x \in X \exists p \in A$ and a neighborhood V of x such that p(v) is a projection of rank one for each point $\forall v \in V$.

Thm. 1 (Dixmier-Douady) If X is finite dimensional then A is locally trivial \Leftrightarrow it satisfies Fell's condition.

Thm. 2 (Dixmier-Douady) Locally trivial continuous fields with fiber K are classified by $H^3(X; \mathbb{Z})$.

How to extend these results to fields with all fibers isom. to a fixed D?

A continuous field which does not satisfy Fell's condition

$$B = \{ f \in C[0,1] \otimes M_2(\mathbb{C}) : f(1/2) = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \}$$

 $B\otimes\mathcal{K}$ has all its fibers isomorphic to \mathcal{K} the compact operators.

 $B \otimes \mathcal{K} \ncong C[0,1] \otimes \mathcal{K}$. Indeed, since $\operatorname{Ker}(B \to B(1/2))$ is contractible $\Rightarrow K_0(B) \cong K_0(B(1/2))$.

Thus
$$(\pi_x)_*: \mathbb{Z} = K_0(B) \to K_0(B(x)) = \mathbb{Z}$$
 is $k \mapsto 2k$ if $x \neq 1/2$.

It useful to consider the K-theory presheaf to capture invariants. $K_0(A[0,2/3])=\mathbb{Z}\to K_0(A[0,1/3])=\mathbb{Z}$ is again $k\mapsto 2k$.

Glueing and sheaves

Any C(X)-algebra yields a sheaf of C*-algebras

$$V\mapsto A(V), \qquad V\subset W\Rightarrow A(W)\to A(V). \quad \text{Moreover the following}$$

diagram is a pullback:

$$A(U \cup V) \longrightarrow A(U)$$

$$\downarrow \qquad \qquad \downarrow$$

$$A(V) \longrightarrow A(U \cap V)$$

$$A(U \cup V) \cong \{(a,b) \in A(U) \oplus A(V) | \pi_{U \cap V}(a) = \pi_{U \cap V}(b) \}.$$

Here U, V, W are closed subsets of X.

K-theory presheaf

$$V \mapsto K_0(B(V)),$$

$$V \mapsto K_0(B(V)), \qquad V \subset W \Rightarrow K_0(B(W)) \to K_0(B(V)).$$

$$K_*(A(U \cup V)) \longrightarrow K_*(A(U))$$

$$\downarrow \qquad \qquad \downarrow$$

$$K_*(A(V)) \longrightarrow K_*(A(U \cap V))$$

is not a pullback in general (Mayer-Vietoris). It is a pullback in the case of sheaves (by definition).

One parameter continuous fields

Thm. (D-Elliott) All unital separable continuous fields over [0,1] with fiber \mathcal{O}_n are trivial.

Thm. (D-Elliott): The unital separable continuous fields over [0,1] whose fibers are stable Kirchberg algebras satisfying the UCT with K_0 torsion free and $K_1 = 0$ are classified by the K-theory sheaf.

Thm. (D-Niu-Elliott): All continuous sheaves of countable abelian groups over [0,1] arise as the K_0 -sheaf of a one-parameter continuous field of Kirchberg algebras.

\mathcal{O}_n -fields

Thm: A unital separable continuous field over X finite dimensional compact Hausdorff and $A(x) \cong \mathcal{O}_n \ \forall x \in X$. Then A is locally trivial.

$$n=2 \quad \Rightarrow \quad A \cong C(X) \otimes \mathcal{O}_2$$

$$n=\infty \quad \Rightarrow \quad A \cong C(X) \otimes \mathcal{O}_\infty$$

$$3 \leq n < \infty \quad \Rightarrow \quad A \cong C(X) \otimes \mathcal{O}_n \text{ iff } (n-1)[1_A] = 0 \text{ in } K_0(A).$$

Key property of O_n which explains the result: $\operatorname{Aut}(O_n)$ is a "deformation retract" of $\operatorname{End}_1(O_n)$. This is reminiscent of $\operatorname{End}_1(M_n(\mathbb{C})) = \operatorname{Aut}(M_n(\mathbb{C}))$

Fiberwise KK-theory

Kasparov defined $KK_X(A,B)$ for C(X)-algebras, same definition as for KK

(E,T) is Fredholm-bimodule:

$$[T,a]\sim 0$$
, $(T^2-1)a\sim 0$, $(T^*-T)a\sim 0$ and

$$\left| fa \, \xi \, b = a \, \xi \, fb \, \right| \quad a \in A, \, b \in B, \, f \in C(X).$$

product $KK_X(A,B) \times KK_X(B,C) \to KK_X(A,C)$

invertible elements $KK_X(A,B)^{-1}$

Have map $KK_X(A,B) \longrightarrow KK(A,B)$.

$$KK_X(A,B) \longrightarrow KK(A(V),B(V))$$

 $\forall V\subset X \text{ closed or open.}$

Kirchberg's isomorphism theorem

Let A,B unital sep. nuclear C*-algebras with Hausdorff spectrum X.

Thm. (Kirchberg)
$$A \otimes \mathcal{O}_{\infty} \otimes \mathcal{K} \cong B \otimes \mathcal{O}_{\infty} \otimes \mathcal{K} \Leftrightarrow KK_X(A,B)^{-1} \neq \emptyset$$
.

Caveats:

 $KK_X(A,B)$ is a complex object; very hard to compute. Even if X=[0,1].

Given A and B how does one determine if they are KK_X -equivalent, i.e. if $KK_X(A,B)^{-1} \neq \emptyset$?

KK_X -equivalence

Thm. Let A and B be separable nuclear continuous fields over a finite dimensional compact metrizable space X. If $\sigma \in KK_X(A,B)$, then $\sigma \in KK_X(A,B)^{-1}$ if and only if $\sigma_x \in KK(A(x),B(x))^{-1}$ for all $x \in X$.

Condition is easy to verify if UCT is assumed for fibers.

Indeed, this amounts to the bijectivity of

$$(\sigma_x)_* : K_*(A(x)) \to K_*(B(x)).$$

Suppose now that $A = C(X) \otimes D$. Then

$$KK_X(C(X) \otimes D, B) \cong KK(D, B)$$

$$\sigma \in KK_X(C(X) \otimes D, B)^{-1} \Leftrightarrow \sigma_x \cong KK(D, B(x))^{-1}, \forall x \in X$$

Local triviality

Def. A satisfies the Fell condition if $\forall x \in X \exists V$ closed neighborhood of x and $\sigma \in KK(D, A(V))$ such that $\sigma_x \in KK(D, A(V))^{-1}$ for all $v \in V$.

Thm. X finite dimensional space. A separable unital continuous field with fibers stable Kirchberg algebras. Then A is locally trivial $\Leftrightarrow A$ satisfies the Fell condition

Def. A satisfies the global Fell condition if $\exists \sigma \in KK(D,A)$ such that $\sigma_x \in KK(D,A(x))^{-1}$ for all $x \in X$. Suppose X finite dimensional and D stable Kirchberg algebra.

Cor. A satisfies the global Fell condition $\Leftrightarrow A$ is isomorphic to $C(X)\otimes D$.

Note that if $D=\mathcal{K}$, then we just have essentially the classic Fell condition. Indeed,

$$K_X(C(X) \otimes \mathcal{K}, A) \cong KK(\mathcal{K}, A) = \text{Hom}(\mathbb{Z}, K_0(A))$$

Thus $\sigma \in K_X(C(X) \otimes \mathcal{K}, A)^{-1}$ is given by a virtual projection of virtual rank one in each fiber $K_0(A(x))$.

Conclusion: Thm 1 of Dixmier-Douady extends to general nuclear continuous fields.

What about Thm2 of Dixmier-Douady? How to classify locally trivial continuous fields with fiber D?

Homotopy groups

 $\operatorname{Aut}(\mathcal{K}) = U(H)/\mathbb{T}$. Since U(H) is contractible, all homotopy groups of $\operatorname{Aut}(\mathcal{K})$ are zero except for $\pi_2\operatorname{Aut}(\mathcal{K}) = \mathbb{Z}$.

Thus all homotopy groups of $B\mathrm{Aut}(\mathcal{K})$ are zero except for $\pi_3 B\mathrm{Aut}(\mathcal{K}) = \mathbb{Z}$. It follows that

$$[X, B\mathrm{Aut}(\mathcal{K})] \cong H^3(X, \mathbb{Z}).$$

The question is now to compute the homotopy classes $[X, B\mathrm{Aut}(D)]$ for a (unital) Kirchberg algebra.

Homotopy groups

If D is a unital C*-algebra,we let $C_{\nu}D$ denote the mapping cone C*-algebra of the unital map $\nu:\mathbb{C}\to D$.

Thm. Let D be a unital Kirchberg algebra. Suppose that X is path connected and finite dimensional and let $x_0 \in X$. Then there are bijections

$$\chi: [X, \operatorname{Aut}(D)^0] \to KK(C_{\nu}D, SC(X, x_0) \otimes A),$$

Cor
$$\pi_{2k+1}(\mathcal{O}_{m+1}) = \mathbb{Z}/m$$
, $\pi_{2k}(\mathcal{O}_{m+1}) = 0, k \ge 0$.

$$0 \quad \mathbb{Z}/m \quad 0 \quad \mathbb{Z}/m \quad 0 \quad \mathbb{Z}/m \quad 0 \cdots$$

$$\operatorname{Aut}(O_{m+1})$$

The computation of $[X, BAut(O_{m+1})]$ is still open. We know

$$[X, \operatorname{Aut}(O_{m+1})] \cong K_1(C(X) \otimes O_{m+1}).$$

Specifically the unitary $x \mapsto U(x) \in U(O_{m+1})$ gives a map

$$X \mapsto \operatorname{End}(O_{m+1}), x \mapsto \alpha_x$$

$$\alpha_x(S_i) = u(x)S_i.$$

Then the map $x \mapsto \alpha_x$ is homotopic to a map $X \to \operatorname{Aut}(O_{m+1})$.

This yields the classification of unital O_{m+1} continuous fields over SX the suspension of X.

∞ -dimensional spaces

Thm. Let A, B be nuclear, separable continuous fields over a finite dimensional metrizable spectrum X. Then an element $\sigma \in KK_X(A,B)$ is a KK_X -equivalence $\Leftrightarrow \sigma_x \in KK(A(x),B(x))^{-1}$ for all $x \in X$.

Cor. Automatic triviality of separable continuous fields with fiber $\mathcal{O}_2 \otimes \mathcal{K}$ over finite dimensional spaces.

Example: There is a nontrivial separable unital continuous field A over X=the Hilbert cube with fibers isomorphic to \mathcal{O}_2 ; $A \ncong C(X) \otimes \mathcal{O}_2$ despite the contractibility of X and $\pi_n \mathrm{Aut}(\mathcal{O}_2) = 0 \ \forall n \geq 0$.

Distinguishing invariant:

$$K_0(A) = \bigoplus_{k=1}^{\infty} \mathbb{Z}/2$$
 whereas $K_0(C(X) \otimes \mathcal{O}_2) = 0$

∞ -dimensional spaces

Using E_X -theory over non Hausdorff spaces:

Thm.(D-Meyer) Let A, B be nuclear, separable continuous fields over a metrizable compact space X. Then an element $\sigma \in KK_X(A,B)$ is a KK_X -equivalence $\Leftrightarrow \sigma_x \in KK(A(V),B(V))^{-1}$ for all $V \subset X$ closed subset.

Cor.(D-Meyer) Let A be separable continuous field of simple nuclear algebras over a compact space X. Suppose that all ideals of A are KK-equivalent to 0. Then $A\otimes \mathcal{O}_{\infty}\otimes \mathcal{K}\cong C(X)\otimes \mathcal{O}_2\otimes \mathcal{K}$.

UCT for zero dimensional Haudorff spaces

$$UCT: \operatorname{Ext}_{\mathbb{Z}}(\mathsf{K}_{*}(A),\mathsf{K}_{*}(SB)) \rightarrow \mathsf{KK}(A,B) \twoheadrightarrow \operatorname{\mathsf{Hom}}_{\mathbb{Z}}(\mathsf{K}_{*}(A),\mathsf{K}_{*}(B)).$$

$$UMCT: \mathsf{PExt}_{\mathbb{Z}}\big(\mathsf{K}_*(A),\mathsf{K}_*(SB)\big) \rightarrowtail \mathsf{KK}(A,B) \twoheadrightarrow \mathsf{Hom}_{\Lambda}\big(\underline{\mathsf{K}}(A),\underline{\mathsf{K}}(B)\big).$$

Fact:

$$\mathsf{PExt}_{\mathbb{Z}}\big(\mathsf{K}_*(A),\mathsf{K}_*(B)\big) = \mathsf{Ext}_{\Lambda}\big(\underline{\mathsf{K}}(A),\underline{\mathsf{K}}(B)\big)$$

UCT for zero dimensional Haudorff spaces

Let X be a metrizable zero dimensional compact Hausdorff space $A,\,B$ nuclear continuous fields over X with fibers satisfying the UCT. The following sequence is not exact.

$$\operatorname{Ext}_{\operatorname{C}(X,\mathbb{Z})} \big(\operatorname{K}_*(A), \operatorname{K}_*(SB) \big) \rightarrowtail \operatorname{KK}_X(A,B) \twoheadrightarrow \operatorname{Hom}_{\operatorname{C}(X,\mathbb{Z})} \big(\operatorname{K}_*(A), \operatorname{K}_*(B) \big).$$

UCT for zero dimensional Haudorff spaces

Let X be a metrizable zero dimensional compact Hausdorff space A, B nuclear continuous fields over X with fibers satisfying the UCT. The following sequence is not exact.

$$\operatorname{Ext}_{\mathsf{C}(X,\mathbb{Z})} \big(\mathsf{K}_*(A), \mathsf{K}_*(SB) \big) \rightarrowtail \mathsf{KK}_X(A,B) \twoheadrightarrow \operatorname{\mathsf{Hom}}_{\mathsf{C}(X,\mathbb{Z})} \big(\mathsf{K}_*(A), \mathsf{K}_*(B) \big).$$

Thm.(D-Meyer) There is an exact sequence

$$\operatorname{Ext}_{\mathsf{C}(X,\Lambda)}\big(\underline{\mathsf{K}}(A),\underline{\mathsf{K}}_*(SB)\big) \rightarrowtail \mathsf{KK}_X(A,B) \twoheadrightarrow \operatorname{\mathsf{Hom}}_{\mathsf{C}(X,\Lambda)}\big(\underline{\mathsf{K}}(A),\underline{\mathsf{K}}(B)\big).$$